Statistics - Quartiles

Quartiles separate an ordered data set into \qquad equal groups, each containing \qquad $\%$ of the set.

How are quartiles found? The data value in the set which corresponds to the quartiles can be found using the following formulas:

$$
\begin{aligned}
& Q_{1}=\square \\
& Q_{2}=\square \\
& Q_{3}= \\
&
\end{aligned}
$$

Ex. 1) Students received the following grades on their last history test:

$$
85,86,59,92,64,42,60,98,100,77
$$

Find the quartiles of these grades.
(1) Order the data set (put it in numerical order)
\qquad
\qquad
\qquad , , \qquad , \qquad , \qquad ,
(2) Find the position of three quartiles
$\longrightarrow Q_{2}=\longrightarrow=\square$
\Rightarrow The second quartile is between the \qquad and \qquad values.

$$
\therefore Q_{2}=\square=
$$

$$
\begin{gathered}
\longrightarrow Q_{1}=\longrightarrow= \\
\Rightarrow \text { The first quartile is positioned at the } \quad \therefore Q_{1}=\square \\
\longrightarrow Q_{3}=\longrightarrow
\end{gathered}
$$

(3) Now go back up to your ordered data set and label Q_{1}, Q_{2}, and Q_{3}. Do they make sense?
(4) What are the values in each quarter?

First quarter:

Second quarter:

Third quarter:

Fourth quarter:

Ex. 2) The following data values are the heights (in feet) of pine trees after 8 years:

$$
11.2,12,12.1,13,10.7,11.9,13.1
$$

Find the quartiles of the data set.

Ex. 3) Find the quartiles of the following data set: 1, 2, 3, 4.

Ex. 4) The official times of the Men's 100 m Final at the 2016 Olympics are:

$$
9.96,9.91,10.06,9.81,9.89,10.04,9.93,9.91
$$

The official times of the Women's 100 Final at the 2016 Olympics are:

$$
\text { 10.86, 10.83, 10.86, 11.80, 10.94, 10.92, 10.71, } 10.90
$$

Find the quartiles for both races. Do the quartiles provide a valid comparison? Why or why not?

Ex. 5) Find the quartiles of the following data set: 1, 100, 103, 105, 106. Do the quartiles provide an accurate description of the set? Why or why not?

Ex. 6) Mr. Willard misplaced one student's test after correcting them. Before writing them in his grade book, he found the quartiles of the 13 test grades. Q_{1} was $62, Q_{2}$ was 70 , and Q_{3} was 73 . What is the missing student's grade knowing the quartiles and that the 12 other students' grades are as follows:

$$
100,46,70,71,66,74,65,62,85,60,62,71
$$

